
1. RESTful API Service
This project is a set of APIs for the library management system. It has endpoints for different
en;;es – books, author, borrowers. It also has support for data valida;on using middleware.
I included the complete database logic also, and it is compa;ble by both rela;onal and non-
rela;onal databases (I leD the code in place for SSMS and Amazon Dynamo, it should also
work for Cassandra). I also included a comprehensive error handling logic using the
middleware. I also included unit tests and func;onal tests. In addi;on to logic and code
management, I also included files related to hos;ng and documenta;on using Swagger.

Code
It is a ASP.NET service-based code repository. I also included Docker and other hos;ng
related files (replace the required keys).

2. Vo6ng Management System

Summary
Vo;ng management applica;on is an API based service. There are endpoints exposed for
both Polls and Votes. Security with JWT authen;ca;on is also implemented. I used
middleware for error handling and also preven;on of unauthorized manipula;on including
uniqueness of votes. One addi;onal thing that I worked on for this is the real-;me updates
for vo;ng counts using Socket.IO/SignalR soDware for .NET.

Code
I used dotnet core soDware to build the APIs, middleware and services.

How to use
1. Create a new Angular project and a new. NETCore Web API project.
2. In the. NETCore Web API project, install the Iden;tyCore NuGet package.
3. Create a new controller called UsersController and add the following routes:
Polls, Users, Votes

In the Startup file (I did not include it. This gets automa;cally created once we create a new
project) register middleware’s as follows,

public void Configure(IApplica5onBuilder app, IWebHostEnvironment env)
{
 // ...
 app.UseMiddleware<Vo5ngMiddleware>();
 // ...
}

Register SignalR Hub

using MicrosoL.AspNetCore.Builder;
using MicrosoL.Extensions.DependencyInjec5on;

public void ConfigureServices(IServiceCollec5on services)
{
 // ...
 services.AddSignalR();
 // ...
}

public void Configure(IApplica5onBuilder app, IWebHostEnvironment env)
{
 // ...
 app.UseEndpoints(endpoints =>
 {
 // ...
 endpoints.MapHub<PollHub>("/pollHub");
 });
 // ...
}

For Authen;ca;on:
// Startup.cs
// Configure JWT authen5ca5on
services.AddAuthen5ca5on(op5ons =>
{
 op5ons.DefaultAuthen5cateScheme = JwtBearerDefaults.Authen5ca5onScheme;
 op5ons.DefaultChallengeScheme = JwtBearerDefaults.Authen5ca5onScheme;
}).AddJwtBearer(op5ons =>
{
 op5ons.TokenValida5onParameters = new TokenValida5onParameters
 {
 ValidateIssuer = true,
 ValidateAudience = true,
 ValidateLife5me = true,
 ValidateIssuerSigningKey = true,
 ValidIssuer = Configura5on["Jwt:Issuer"],
 ValidAudience = Configura5on["Jwt:Issuer"],
 IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(Configura5on["Jwt:Key"]))
 };
});

// Sample code for rate limi5ng middleware in Startup.cs
app.UseMiddleware<RateLimitMiddleware>();

4. Weather App

Summary
It takes loca;on as the input and displays informa;on about its weather. It also has CSS to
support styling. I used OpenWeatherMapp API to get more accurate and granular weather
informa;on. It also has weather forecast op;on using the same API.

Code
The code has three files – index.html, styles.css and scripts.js.
The HTML has all the pieces together, CSS has the styling, and the JS file has the API call to
the Weather-related APIs and random genera;on/weather forecast logic.

5. Quiz App

Summary
Javascript based ques;onnaire paired with HTML. It also has CSS and styling components,
which are easily configurable. There is also a component for random ques;on genera;on.
The score is displayed at the end

About the code
There is only one file, the ques;ons can be altered in the future and are easily configurable.

